MATH 222

UNIVERSITY EXAMINATIONS

SECOND SEMESTER 2023/2024 ACADEMIC YEAR

SECOND YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (GENERAL)

MATH 222: MECHANICS

STREAM: R

TIME: 2 HRS

KEBS

DAY: WEDNESDAY[11.30A.M – 1.30P.M] DATE: 10/04/2024

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

PLEASE DO NOT OPEN UNTIL THE INVIGILATOR SAYS SO.

INSTRUCTIONS: ANSWER QUESTION "?ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)

(a) Define simple harmonic motion	(2 Marks)		
(b) Write down a formula for the displacement x of a particle in SHM in			
terms of A, w, t and ϕ	(2 Marks)		
(c) Using the formula in (b) above, deduce the equations for the velocity v and acceleration a of the			
particle. What is the maximum value of v and a in terms of in terms of A and w ?	(2 Marks)		
(d) Compute the gravitation force between the earth and the sun if they are 150 million km apart.			
(mass of the sun= $2.0 \times 10^{30} kg$ mass of the earth= $6.0 \times 10^{24} kg$ Take G= $6.67 \times 10^{-11} Nm^2 / kg^2$)			
	(3 Marks)		
(e) In a machine, the load moves 2m when the effort moves 8m. If an effort of 20N is used to raise a			
load of 60N, what is the efficiency of the machine?	(3 Marks)		
(f) A 30g bullet is fired horizontally at a speed of 400m/s into a 1.6kg block that hangs on a vertical			
string.			
The bullet remains embedded in the block.			
(i) What is the final speed of the bullet and the block?	(3 Marks)		
(ii) How high will the bullet-block system rise?	(3 Marks)		
(a) The mass on the end of a spring oscillates with a period of 1.8s and emplitude of 2.3	om Computer		
(g) The mass on the end of a spring oscillates with a period of 1.8s and amplitude of 3.2cm. Compute;			

(i) The angular frequency of the oscillation (3 Marks)
(ii) Maximum velocity (3 Marks)

- (iii) Maximum acceleration (3 Marks)
- (iv) The speed of the particle when the displacement from the equilibrium position is 0.8cm

(3 Marks)

 Vision : A University for Valued Transformation of Society
 Page 2 of 5

 Mission: To serve students and society through research, education, scholarship, training, innovation, outreach and consultancy

QUESTION TWO (20 MARKS)

(a) State Newton's first law of motion. (2 Marks)
(b) A minibus of mass 1800kg travelling at a constant velocity of 72km/h collides head-on with a stationary car of mass 1000kg. The impact takes 2 seconds before the two move together at a constant velocity for 20s. Compute;

(i)	The common velocity	(3 Marks)
(ii)	The distance moved after impact	(3 Marks)
(iii)	The impulsive force	(3 Marks)
(iv)	The change in kinetic energy	(3 Marks)

 (c) An object moving with simple harmonic motion has an amplitude of 2 cm and a frequency of 20Hz. Calculate;

(i)	The period of Oscillation	(3 Marks)
(ii)	The acceleration at the middle and at the end of an oscillation	(3 Marks)

QUESTION THREE (20 MARKS)

	nguish between forced and dumped oscillation ock pendulum has a period of 2.0s and a mass of 750g. The ampli	(2 Marks) (itude of the oscillation is
4.8cm	n.	
Com	pute;	
(i)	The maximum kinetic energy and	(3 Marks)
(ii)	Its speed when it is travelling through the center	(3 Marks)
(c) Define the following terms stating their SI units;		
(i)	Work	(2 Marks)
(ii)	Power	(2 Marks)
(d) A force of $120\vec{i} + 50\vec{j}$ N acts on a body for 5 secs. If the body's displacement is $3\vec{i} + 4\vec{j}$ m.		

Calcu	ılate;	
(i)	The Work done	(3 Marks)
(ii)	The Power	(3 Marks)

(e) Find the angle of banking for a vehicle moving with velocity of 20 m/s to negotiate a safe turn of radius 50m
 (2 Marks)

Vision : A University for Valued Transformation of SocietyPage 3 of 5Mission: To serve students and society through research, education, scholarship, training, innovation, outreach and consultancy

QUESTION FOUR (20 MARKS)

- (a) A ball is kicked with a velocity of 120 m/s at an angle of 40° above the horizontal. Find:
 - (i) the time the ball takes to reach the highest point of its path (3 Marks)
 - (ii) the greatest height reached above the ground (3 Marks)
 - (iii) the horizontal distance covered when it hits the ground at the same horizontal level.

(3 Marks)

(3 Marks)

KEBS

- (b) A rectangular block of mass 48kg resting on a flat wooden surface requires a minimum force of 360N to start sliding and a force of 240N to keep it moving along the surface at a constant velocity. Determine;
 - (i) The coefficient static friction (2 Marks)
 - (ii) The coefficient of kinetic friction of the wooden surface (3 Marks)
- (c) Assume you weigh 683N and the person sitting 2.3m away from you weighs 742N. What is the gravitational force between the two of you? (Take $G=6.67 \times 10^{-11} \text{ Nm}^2/\text{Kg}^2$) (2 Marks)
- (d) Starting from rest, a disk rotates about its central axis at an angular velocity of 15.3 rad/s. If the drum then slows at a constant rate of 5.1 rad/s²;
 - (i) How much time does it take to come to rest? (2 Marks)
 - (ii) Through what angle does it rotate when coming to rest? (2 Marks)

QUESTION FIVE (20 MARKS)

- (a) Two particles A and B of mass 10 kg and 5 kg respectively are travelling along the same line with constant speeds $6 ms^{-1}$ and $4 ms^{-1}$ respectively. If they collide and stick together, find their speed just after impact:
 - (i) If they collide head on
 - (ii) If they were originally travelling in the same direction. (3 Marks

(b) An object is projected with a velocity of u m/s at an angle of θ to the horizontal.

Show that;

(i) Time of flight, T is given by;

$$T = \frac{2u \sin \theta}{g}$$
(ii) The maximum height reached, H is given by;

$$H = \frac{u^2 \sin^2 \theta}{2g}$$
(3 Marks)

The Horizontal range, R is given by (iii)

(3 Marks)

$$R = \frac{u^2 \sin 2\theta}{g}$$

(c) A light string passing over a light smooth pulley carries two masses of 10kg and 14kg at its ends. Determine;

- The acceleration and (3 Marks) (i)
- Tension in the string if the system is allowed to move from rest. (3 Marks) (ii)

